4 research outputs found

    Exploiting Image-trained CNN Architectures for Unconstrained Video Classification

    Full text link
    We conduct an in-depth exploration of different strategies for doing event detection in videos using convolutional neural networks (CNNs) trained for image classification. We study different ways of performing spatial and temporal pooling, feature normalization, choice of CNN layers as well as choice of classifiers. Making judicious choices along these dimensions led to a very significant increase in performance over more naive approaches that have been used till now. We evaluate our approach on the challenging TRECVID MED'14 dataset with two popular CNN architectures pretrained on ImageNet. On this MED'14 dataset, our methods, based entirely on image-trained CNN features, can outperform several state-of-the-art non-CNN models. Our proposed late fusion of CNN- and motion-based features can further increase the mean average precision (mAP) on MED'14 from 34.95% to 38.74%. The fusion approach achieves the state-of-the-art classification performance on the challenging UCF-101 dataset

    EgoCom: A Multi-person Multi-modal Egocentric Communications Dataset

    No full text
    Multi-modal datasets in artificial intelligence (AI) often capture a third-person perspective, but our embodied human intelligence evolved with sensory input from the egocentric, first-person perspective. Towards embodied AI, we introduce the Egocentric Communications (EgoCom) dataset to advance the state-of-the-art in conversational AI, natural language, audio speech analysis, computer vision, and machine learning. EgoCom is a first-of-its-kind natural conversations dataset containing multi-modal human communication data captured simultaneously from the participants' egocentric perspectives. EgoCom includes 38.5 hours of synchronized embodied stereo audio, egocentric video with 240,000 ground-truth, time-stamped word-level transcriptions and speaker labels from 34 diverse speakers. We study baseline performance on two novel applications that benefit from embodied data: (1) predicting turn-taking in conversations and (2) multi-speaker transcription. For (1), we investigate Bayesian baselines to predict turn-taking within 5% of human performance. For (2), we use simultaneous egocentric capture to combine Google speech-to-text outputs, improving global transcription by 79% relative to a single perspective. Both applications exploit EgoCom's synchronous multi-perspective data to augment performance of embodied AI tasks

    Mass Testing and Characterization of 20-inch PMTs for JUNO

    No full text
    Main goal of the JUNO experiment is to determine the neutrino mass ordering using a 20kt liquid-scintillator detector. Its key feature is an excellent energy resolution of at least 3 % at 1 MeV, for which its instruments need to meet a certain quality and thus have to be fully characterized. More than 20,000 20-inch PMTs have been received and assessed by JUNO after a detailed testing program which began in 2017 and elapsed for about four years. Based on this mass characterization and a set of specific requirements, a good quality of all accepted PMTs could be ascertained. This paper presents the performed testing procedure with the designed testing systems as well as the statistical characteristics of all 20-inch PMTs intended to be used in the JUNO experiment, covering more than fifteen performance parameters including the photocathode uniformity. This constitutes the largest sample of 20-inch PMTs ever produced and studied in detail to date, i.e. 15,000 of the newly developed 20-inch MCP-PMTs from Northern Night Vision Technology Co. (NNVT) and 5,000 of dynode PMTs from Hamamatsu Photonics K. K.(HPK)
    corecore